

Telemetry API
Implementation
guide

Versie: 1.9 05-03-2025

Telemetry API Implementation guide 2

Version history

Version Date Change
1.0 Initial version
1.1 31-10-2022 Added the Shared-endpoints (for representatives)
1.2 26-04-2023 Corrected URL for developer-portal (from http to https)
1.3 28-04-2023 Added the GetSharedCustomerIds-endpoint (for

representatives)
1.4 28-07-2023 Added information about the used timestamps
1.5 13-10-2023 Added customerId query parameter (for representatives)
1.6 30-10-2023 Styling
1.7 10-01-2024 Added the GetDetailedMeteringPoints-endpoint
1.8 08-01-2025 Added some context to the GetChanges endpoint and made

sure the Dutch and English manual are consistent
1.9 05-03-2025 Added a small note to the GetChanges endpoint to clarify how

the checkpoint works

Telemetry API Implementation guide 3

Contents

Getting started 4

Introduction 4

Developers Portal 4

Interactive API-Specification 4

Timestamps 7

API Keys 7

How to use 7

Telemetry requests 8

Intended Use 8

Implementation 8

1. Get Metering Points and Channels 8

2. Get Channel Metadata (optional) 9

3. Get Telemetry 9

Change feed requests 10

Intended Use 10

Implementation 10

1. Get Detailed Metering Points 10

2. Get Channel Metadata (initial load) 11

3. Get Telemetry (initial load) 11

4. Get Changes 12

5. Processing Changes 13

Request data as a representative 14

Introduction 14

Getting the customer ids 14

Requesting data in name of a customer 14

Deprecated endpoints 14

Telemetry API Implementation guide 4

Getting started
Introduction
The Telemetry API of Fudura provides access to telemetry and information about availa-
ble telemetry streams. Aside from querying current telemetry, it is possible to stay up to
date with new and updated telemetry with a change feed.

This document explains how to consume the API.

Developers Portal
To get started you need an account to Fudura’s Developer Portal
(https://developers.fudura.nl). This account can be obtained via Sales / Customer
Support. An invite to create an account will be sent to the provided e-mail address.

After creating a password and logging in to your newly created account you can access
the specification for the Telemetry API, retrieve API keys and perform test request
against the API.

Interactive API-Specification
The specification for the Telemetry API can be found under “APIs”  “Telemetry API”.

Telemetry API Implementation guide 5

The specification is provided in both an interactive, graphical format as well as a
downloadable document by selecting the desired format in the dropdown:

The graphical interface allows you not only to browse the endpoints, but also to send
requests directly from the browser. The “try it” button (on the right) opens a new
interface where you can try out a request.

Telemetry API Implementation guide 6

After sending the request you get the options to reveal the secrets, or to copy the full
request and used headers with just one click.

And by opening the dropdown at the HTTP request you can get examples on how to
implement the request in code for the most popular programming languages.

Telemetry API Implementation guide 7

Timestamps
All times used in the Telemetry API are in UTC, in the “Zulu-time”-format. For each
consumption reading the ReadingTimestamp represents the until-timestamp. For
example: for the electricity consumption from 2023-07-25T15:45Z till 2023-07-
25T16:00Z the ReadingTimestamp will be 2023-07-25T16:00Z.

API Keys
Your API Keys can be found under “Profile” under “Subscriptions”. You can view and
regenerate the keys here. Note: Keep these keys in a safe place! Do not commit a
key into version control or share it with others. If you suspect a key might be
leaked, regenerate it, and update the key in your application.

How to use
There are multiple ways to consume the Telemetry API, which option you should choose
depends on your use case:

- Access to telemetry on an ad-hoc base  follow the instructions in chapter 2.
- Keep your systems up to date with updated and new telemetry  make use

of the changefeed as described in chapter 3.

Telemetry API Implementation guide 8

Telemetry requests
Intended Use
This chapter shows how to implement an integration with the Telemetry API to query
telemetry. The method described below is tailored for on demand querying or use cases
where only the current snapshot of telemetry is needed. If the candidate system needs
to stay up to date with changes or new telemetry, make use of the change feed as
described in chapter 3.

Implementation
To get started we need to understand these key concepts:

- EAN An 18-digit identifier for a (grid) connection.
- Metering Point Represents a measured connection.
- Metering Point Id An identifier for a metering point, consisting of an EAN

optionally followed by a suffix.
- Channel Represents a channel of a single type of measurement.
- Channel Id An identifier for a channel.

Querying telemetry is done via the
/telemetry/meteringpoints/{meteringPointId}/channels/{channelId}/query
endpoint, but before we can query this endpoint, we need to decide which metering
point and channel to query. The process of getting this information and finally querying
the telemetry consists of the following steps:

1. Get Metering Points and Channels
The first step is to query the available metering points, including channels and
authorization periods for which telemetry data is available. This is done using the
/telemetry/detailed-meteringpoints endpoint, listed as operation
GetDetailedMeteringPoints in the developer portal. This endpoint will provide
information about which EANs are available to you, which metering points are available
under each EAN, and for which time period(s) you are authorized to query the telemetry
data.
When you are authorized to many metering points the response will be split. Each
successive result can be requested by providing the given continuation token.

Telemetry API Implementation guide 9

2. Get Channel Metadata (optional)
With the results from step 1 you have a list of metering points and channels you can
query, but little context about the data that is contained in each channel. The
/telemetry/meteringpoints/{meteringPointId}/channels/{channelId} endpoint,
listed as operation GetChannelMetadata in the developer portal, can be used to get
metadata about the channel. This includes the data type, measurement interval,
description, first and last reading timestamp and more.

3. Get Telemetry
Now you have selected a metering point and channel you can finally query the
telemetry with the
/telemetry/meteringpoints/{meteringPointId}/channels/{channelId}/query
endpoint, listed as operation GetTelemetry in the developer portal. When querying
larger time ranges, only a subset of the telemetry available may be returned, in that
case the results will also contain a continuation token. This continuation token is to be
used to repeat the same query with the continuation token added as a query
parameter. This will continue the query and return the next set of telemetry. Once no
continuation token is returned the query is complete. The size of the result set is not
guaranteed, but should be fairly consistent, so the amount of api calls needed to
complete a query will correlate to the size of the queried time range and measurement
interval of the queried channel.

Notes:

- The query endpoint requires a given date range that is within the authorization
period for the given metering point, otherwise it will return an unauthorized
result.

- The from and to parameters must be supplied as “Zulu” time following ISO 8601
(for example: 2022-07-15T13:20:05Z).

- The from query parameter is exclusive.
- The to query parameter is inclusive.

Telemetry API Implementation guide 10

Change feed requests

Intended Use
This chapter shows how to implement an integration with the Telemetry API which stays
up to date with changes or new telemetry. For on demand querying read chapter 2
instead.

Implementation
To get started we need to understand these key concepts:

- EAN An 18-digit identifier for a (grid) connection.
- Metering Point Represents a measured connection.
- Metering Point Id An identifier for a metering point, consisting of an EAN

optionally followed by a suffix.
- Channel Represents a channel of a single type of measurement.
- Channel Id An identifier for a channel.
- Change Feed Checkpoint A token that represents a single point in the sequence

of changes in the change feed.

Querying changes is done via the /telemetry/meteringpoints/{meteringPoin-
tId}/channels/{channelId}/changes endpoint. But before we can use this endpoint,
we need to decide which metering point and channel to query and perform an initial
load of telemetry. The process of getting this information and finally changes consists of
the following steps:

1. Get Detailed Metering Points
The first step is to query the available metering points, including channels and
authorization periods for which telemetry data is available. This is done using the
/telemetry/detailed-meteringpoints endpoint, listed as operation
GetDetailedMeteringPoints in the developer portal. This endpoint will provide
information about which EANs are available to you, which metering points are available
under each EAN, and for which time period(s) you are authorized to query the telemetry
data.
When you are authorized to many metering points the response will be split. Each
successive result can be requested by providing the given continuation token.

Telemetry API Implementation guide 11

2. Get Channel Metadata (initial load)
With the results from step 1 you have a list of metering points and channels you can
query, but little context about the data that is contained in a given channel. The
/telemetry/meteringpoints/{meteringPointId}/channels/{channelId} endpoint,
listed as operation GetChannelMetadata in the developer portal, can be used to get
metadata about the channel. This includes the data type, measurement interval,
description, first and last reading timestamp and more.

The result contains a property lastChangeFeedCheckpoint. The client application will
need to remember this value and provide it with the first call to the GetChanges
endpoint.

Attention: The received checkpoint is the latest known checkpoint for this
meteringpoint/channel-combination. When you request data with the changefeed for this
token immediately after getting it, it will most likely return an empty set, which means no new
data is available yet for this meteringpoint/channel combination.

3. Get Telemetry (initial load)
Now you have selected a metering point and channel you can finally query the
telemetry with the
/telemetry/meteringpoints/{meteringPointId}/channels/{channelId}/query
endpoint, listed as operation GetTelemetry in the developer portal. When querying
larger time ranges, only a subset of the telemetry available may be returned, in that
case the results will also contain a continuation token. This continuation token is to be
used to repeat the same query with the continuation token added as a query
parameter. This will continue the query and return the next set of telemetry. Once no
continuation token is returned the query is complete. The size of the result set is not
guaranteed, but should be fairly consistent, so the amount of api calls needed to
complete a query will correlate to the size of the queried time range and measurement
interval of the queried channel.

Notes:

- The query endpoint requires a given date range that is within the authorization
period for the given metering point, otherwise it will return an unauthorized
result.

- The from and to parameters must be supplied as “Zulu” time following ISO 8601
(for example: 2022-07-15T13:20:05Z).

- The from query parameter is exclusive.
- The to query parameter is inclusive.

Telemetry API Implementation guide 12

4. Get Changes
Now that you have retrieved the historical data, it is time to use the GetChanges
endpoint to stay up to date with new telemetry. The GetChanges endpoint,
/meteringpoints/{meteringPointId}/channels/{channelId}/changeFeed={CheckPo
intId}, can be called with the meteringPointId and channelId parameters. For the first
call to this endpoint, use the checkpoint that we retrieved earlier through the
GetChannelMetadata endpoint.

The response will contain all changes that were made to telemetry for this
meteringPointId and channelId since the checkpoint. This includes both new and
updated readings. The response will also include a property checkPoint if more data is
available. More requests can be made to this endpoint until the checkPoint property is
no longer present in the response. This means that we have caught up with the most
recent telemetry. Make sure that your application remembers the last checkpoint value
that was used in the request in order to continue from this checkpoint at a later time.

With changes we mean the following:

 New metering values
 Correction of previous metering values
 Changed validation result

The GetChanges endpoint only returns recent changes to telemetry. This means that:

- Changes made more than 10 days ago will not be returned.
- Changes made less than 10 days ago will be returned, including changes

regarding metering values from further in the past.

A checkpoint is only valid for a limited period of 10 days. After this period checkpoints
are removed by the system. No warning is given when an invalid checkpoint is used.
Instead, the response will contain data for the checkpoints that still exist for your
telemetry data. Therefore, we advise to query the GetChanges endpoint at least daily, or
more often if needed.

Telemetry API Implementation guide 13

5. Processing Changes
The GetChanges endpoint represents a changefeed where all updates on telemetry for
the given channel is recorded. This means that the results can contain multiple updates
of the same reading (timestamp). All readings, or updates, in the result are ordered
chronologically.

There are multiple causes for a timestamp to get multiple updates like corrections and
validation. Since the validation process is asynchronous, the validation result will always
be a later update to the reading. The following diagram shows a scenario where a single
reading is collected and validated, after which a correction is made to that reading and
is also validated.

Another example could be estimation, where the actual reading is later collected from
the meter without validation.

To process the readings, every subsequent reading for a given timestamp should be
considered a full update containing all available properties for that reading.

Telemetry API Implementation guide 14

Request data as a representative
Introduction
A Fudura customer can authorize a representative to request the data on the cus-
tomer’s behalf. Once that approval is processed by the Fudura Customer Support, the
authorized representative can request the data of the customer with the API account of
the representative. There is no need to share API login credentials or authorization keys.
The only thing the representative needs to know is the customerId (klantnummer).

Getting the customer ids
A representative can use the GetSharedCustomerIds endpoint to get a list of customer
Ids of the customers for whom the representative is authorized.

Requesting data in name of a customer
All endpoints described in the previous chapters have an optional customerId-query-
parameter. This parameter can be used as followed:

- Leave empty to get your own data.

- Use the customerId of the customer that mandated you to retrieve data on
their behalf.

- Use a * to return all data you have access to, regardless of the customer.

Deprecated endpoints
Some endpoints are deprecated, but still available for backwards compatibility. Use the
suggested alternatives to make sure your application still works with upcoming
versions.

Deprecated endpoint Alternative
GetSharedChanges GetChanges + parameter customerId
GetSharedChannelMetadata GetChannelMetadata + parameter customerId
GetSharedChannels GetChannels + parameter customerId
GetSharedMeteringPoints GetMeteringPoints + parameter customerId
GetSharedTelemetry GetTelemetry + parameter customerId

